- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Astrakharchik, G. E. (1)
-
Deshommes, Dumesle (1)
-
Dunjko, Vanja (1)
-
Gonchenko, Marina (1)
-
Olshanii, Maxim (1)
-
Torrents, Jordi (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
- Filter by Editor
-
-
null (1)
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)The recently proposed map [5] between the hydrodynamic equationsgoverning the two-dimensional triangular cold-bosonic breathers [1] andthe high-density zero-temperature triangular free-fermionic clouds, bothtrapped harmonically, perfectly explains the former phenomenon butleaves uninterpreted the nature of the initial(t=0)singularity. This singularity is a density discontinuity that leads, inthe bosonic case, to an infinite force at the cloud edge. The map itselfbecomes invalid at times t<0 t < 0 .A similar singularity appears at t = T/4 t = T / 4 ,where Tis the period of the harmonic trap, with the Fermi-Bose map becominginvalid at t > T/4 t > T / 4 . Here, we first map—using the scale invariance of the problem—thetrapped motion to an untrapped one. Then we show that in the newrepresentation, the solution [5] becomes, along a ray in the directionnormal to one of the three edges of the initial cloud, a freelypropagating one-dimensional shock wave of a class proposed by Damski in[7]. There, for a broad class of initial conditions, the one-dimensionalhydrodynamic equations can be mapped to the inviscid Burgers’ equation,which is equivalent to a nonlinear transport equation. Morespecifically, under the Damski map, thet=0singularity of the original problem becomes, verbatim, the initialcondition for the wave catastrophe solution found by Chandrasekhar in1943 [9]. At t=T/8 t = T / 8 ,our interpretation ceases to exist: at this instance, all threeeffectively one-dimensional shock waves emanating from each of the threesides of the initial triangle collide at the origin, and the 2D-1Dcorrespondence between the solution of [5] and the Damski-Chandrasekharshock wave becomes invalid.more » « less
An official website of the United States government
